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Abstract: Spinal cord tumors are complicated and infrequent, which poses a major challenge 
to surgeons during neurosurgery. Currently, the intraoperative identification of the tissues’ 
pathological properties is usually difficult for surgeons. This issue influences the decision-
making in treatment planning. Traditional pathological diagnoses can facilitate judging the 
tissues’ properties, but the diagnosis process is complex and time-consuming. In this study, 
we evaluated the potential of autofluorescence spectroscopy for the fast pathological 
diagnosis of specific spinal cord tumors. The spectral properties of six types of spinal cord 
tumors were acquired ex vivo. Several peak intensity ratios were calculated for classification 
and then associated with the pathological immunohistochemical indexes. Our results revealed 
the spectral properties of three types of intramedullary tumors different from those of the 
other three types of extramedullary tumors. Furthermore, some peak intensity ratios revealed 
a high correlation with the immunohistochemical index of glial fibrillary acidic protein 
(GFAP). Thus, we believe that autofluorescence spectroscopy has the potential to provide 
real-time pathological information of spinal cord tumors and help surgeons validate tumor 
types and perform precise tumor resection. 
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1. Introduction 
Tumor diseases are well-recognized as a severe threat to the human health. It is estimated that 
tumor diseases may result in almost 7.6 million deaths annually all over the world in 2013 [1]. 
Among all tumor diseases known, the nervous system tumor is one of the most difficult 
tumors to be treated, such as brain tumors and spinal cord tumors. For most nervous system 
tumors, surgical resection is the most effective treatment method. However, currently, 
intraoperative identification of tissues’ pathological information is difficult for surgeons. In 
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neurosurgery, this pathological information is critical for surgeons because different types of 
diseases may require different treatment plans [2]. If surgeons are unsure about the tumor 
type, it is possible to develop an inadequate treatment plan and influence the treatment effect. 
Therefore, accurate pathological information of the tissues is crucial for neurosurgery. 

Conventional medical imaging techniques, such as computed tomography (CT) and 
magnetic resonance imaging (MRI), provide preoperative information with high spatial 
resolutions for surgeons to develop a treatment plan; however, these two imaging methods do 
not provide real-time information. Intraoperative MRI (iMRI) and ultrasound imaging (US) 
possess the potential for real-time diagnosis, whereas iMRI is expensive and has a high 
demand for the operating room, and the use of US is limited because of the low quality 
images produced [3]. Furthermore, these abovementioned imaging techniques rarely provide 
accurate pathological information. Currently, frozen pathological biopsy is widely preferred 
for intraoperative tissue identification; however, this technique is time-consuming and 
complex. Therefore, it is deemed necessary to develop a more convenient method that can 
provide accurate pathological diagnostic information in a short time. 

Optical biopsy is a promising method for fast intraoperative diagnosis. This method 
applies the phenomenon of interaction between light and the examined tissues, such as 
scattering and reflection, to obtain pathological information. The common optical diagnostic 
methods include Raman spectroscopy, optical coherence tomography, fluorescence imaging 
and spectroscopy [4]. In this study, we focused on fluorescence imaging and spectroscopy in 
consideration of its convenience for medical application [5–7]. Fluorescence may be sourced 
from extrinsic or intrinsic agents, and the corresponding imaging and spectroscopic methods 
can provide real-time diagnostic information. Fluorescence imaging by using extrinsic 
fluorescent agents such as 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX is 
widely studied and can provide intraoperative imaging of tumors [8]. Shimizu et al. [9] 
reported the application of photodynamic diagnosis in surgery for spinal ependymoma. Sabel 
et al. [10,11] used 5-ALA fluorescence-guided resection to treat intramedullary malignant 
glioma. Inoue et al. [12] applied 5-ALA fluorescence to the resection of intramedullary 
ependymoma. Millesi et al. [13] also investigated 5-ALA-induced fluorescence characteristics 
of spinal tumors. All these researches have illustrated that 5-ALA-induced fluorescence is 
able to help surgeons discriminate tumors better and thus improve the operation safety. 
However, the mechanism of 5-ALA-induced fluorescence remains unclear, and for some 
types of spinal tumors, 5-ALA-induced fluorescence cannot be observed. Besides, 5-ALA-
induced fluorescence is hard to be used for the discrimination of different types of spinal 
tumors. 

Autofluorescence arises from some intrinsic fluorescent agents when excited by specific 
wavelengths in biological tissues such as porphyrin, collagen, and flavin [14,15]. 
Autofluorescence spectroscopy is a kind of label-free diagnosis that may provide more 
information about tumors’ pathological properties for fast classification, and some relevant 
researches have been carried out. Lin et al. [16] used autofluorescence combined with diffuse 
reflectance spectroscopy to measure the different parameters between the normal and 
tumorous brain tissues, and the corresponding algorithms based on these parameters were 
highly sensitive and specific. Saraswathy et al. [17] also used autofluorescence spectroscopy 
to test the optimum wavelength for the differentiation of brain tumors and thereby suggested 
an optimal excitation wavelength of 470 nm. Other researchers also applied autofluorescence 
spectroscopy to the liver, bladder, and colon tissues [18–20] and concluded that 
autofluorescence spectroscopy may be a fast and accurate method for intraoperative 
diagnosis. 

Spinal cord tumors have a low incidence and are challenging to surgeons owing to the 
important functions of the normal spinal cord. However, few researchers have studied the 
optical properties of spinal cord tumors. In this study, we developed an autofluorescence 
spectral measurement system to acquire the spectral properties of different types of spinal 
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To further analyze the correlation between the clustering distribution of peak intensity 
ratios and the spinal cord tumor type, the immunohistochemical results were considered. 
Several immunohistochemical indexes, such as S-100, GFAP, and Epithelial Membrane 
Antigen (EMA), if present, were acquired. Correlation analysis was applied to analyze the 
relationship between the peak intensity ratios and immunohistochemical indexes (Table 2). 
The results of correlation analysis indicated that the relative peak intensity ratios R6, R7, and 
R8 shared a high and significant correlation with the GFAP expression. The tumors with 
negative GFAP are likely to achieve high R6, R7, and R8 values (>1.0), in contrast, the tumors 
with positive GFAP are likely to achieve low R6, R7, and R8 values (<1.0). GFAP exists in 
mature astrocytes of the human central nervous system; it is a type of intermediate filament 
and plays an important role in cell regulation [21]. GFAP also exists as a type of biomarker 
that indicates some kinds of tumors’ malignancy and prognosis. The correlation between the 
GFAP expression and the values of relative peak intensity ratios possibly indicates that the 
GFAP expression may be correlated with the content of some intrinsic fluorescent agents in 
the tumorous tissues. 

Furthermore, we also found that all ependymoma, CNS embryonal tumor and 
glioblastoma multiforme in our study were intramedullary. On the contrary, all lipomyoma, 
meningioma and schwannoma were extramedullary. This observation corresponded with the 
common performance of spinal cord tumors. In other words, most intramedullary tumors are 
likely to perform positive GFAP and possess low R6, R7, and R8 values (<1.0), while most 
extramedullary tumors are likely to perform negative GFAP and possess high R6, R7, and R8 
values (>1.0). 

Table 2. Pearson’s R Coefficient Between Peak Intensity Ratios (PIR) and 
Immunohistochemical Indexes (IMI) 

IMI 
PIR 

GFAP EMA S-100 

R6 −0.742 (P < 0.001) −0.359 (P = 0.019) −0.327 (P = 0.035) 
R7 −0.903 (P < 0.001) −0.643 (P = 0.001) −0.092 (P = 0.562) 

R8 −0.745 (P < 0.001) −0.486 (P = 0.001) −0.158 (P = 0.319) 

(Positive IMI denotes 1; Negative IMI denotes 0) 

4. Discussion 
This study involved a total of 41 patients with six different types of spinal cord tumors. We 
conducted autofluorescence spectral measurements to evaluate the diagnostic potential of 
autofluorescence spectroscopy in these patients. To the best of our knowledge, this is the first 
application of autofluorescence spectroscopy to spinal cord tumors, mainly due to the relative 
low incidence of spinal cord tumors. In order to differentiate the six types of spinal cord 
tumors, several peak intensity ratios were calculated. The different peak intensity ratios of 
spinal cord tumors possibly indicated the different contents of endogenous fluorophores. We 
found that the values of R6, R7, and R8 were larger in extramedullary tumors like lipomyoma, 
meningioma, and schwannoma than in intramedullary tumors like CNSET, ependymoma, and 
GBM. Furthermore, we analyzed the correlation between the autofluorescence properties and 
immunohistochemical indexes and found that the values of R6, R7, and R8 were inversely 
proportional to the GFAP index. In other words, the GFAP expression may influence the 
relative intensity of autofluorescence spectrum, possibly indicating that GFAP is related to 
the amount of endogenous fluorophores in spinal cord tumors. This finding is believed to be 
extremely useful for clinical application. In neurosurgery, surgeons usually require different 
treatment plans for intramedullary or extramedullary tumors. Our proposed technique can 
provide fast pathological information of tumors, which will assist surgeons in judging the 
tumor type and therefore in planning a corresponding treatment plan to achieve better clinical 
outcomes. 
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From the measurement data, we now know that the major UV-VIS endogenous 
fluorophores in spinal cord tumors are mainly coincident with those in other human tumor 
tissues [16–20]. The emergence of the three common fluorescence peaks may be attributed to 
the emission of NAD(P)H, lipopigments, and porphyrins, respectively [14,22,23]. The 
particular fluorescence peak centered at 520 nm may arise due to the emission of flavin 
adenine dinucleotide and flavins [14,15], while the fluorochrome responsible for the 
fluorescence peak centered at 394 nm remained uncertain. The fluorochromes close to this 
excitation-emission band include structural proteins like collagen and elastin as well as 
vitamin B6 compounds like pyridoxine and pyridoxal 5′-phosphate [14]. Generally, Collagen 
does not exist in the brain tissues [22]. However, Saraswathy et al. [17] indicated that 
collagen might be responsible for one of the emission bands at 320-nm excitation in the brain 
tumor autofluorescence. To clarify which fluorochromes are responsible for the emission of 
spinal cord tumors and to further explain the correlation between different fluorochromes and 
GFAP expression, we will investigate the spectra and composition of more different spinal 
cord tumors by using additional other methods like mass spectrometry [24,25]. 

Spinal cord tumors occur in several types, and each type may have a unique 
autofluorescence spectral property. In fact, even the same tumor type may possess different 
optical properties when their growth environment is different. Therefore, it is deemed 
essential to validate the generalizability of our observations. In the future, we plan to analyze 
more kinds of spinal cord tumors for more precise tumor analysis, validate our conclusion 
that intramedullary and extramedullary tumors have different autofluorescence properties, and 
further explain the correlation between immunohistochemical indexes and autofluorescence 
spectroscopy. Our present results indicate that different types of intramedullary (or 
extramedullary) tumor demonstrate similar EEM and that it is difficult to distinguish within 
the intramedullary (or extramedullary) tumor group based on the currently available methods. 
Therefore, more excitation wavelengths like near-infrared (NIR) band and the corresponding 
techniques such as time-resolved spectroscopy and fluorophore localizing are believed to 
provide detailed information about tissues’ properties [26–28], and thereby further improve 
the diagnostic efficiencies for precision medicine [29–31]. 

The grading of tumors is important for surgeons to decide the appropriate treatment plan. 
Currently, the grading of tumors is acquired by pathological diagnosis. Mitosis, cellular 
pleomorphism and cell morphology are the common methods used to grade a tumor. Some 
immunohistochemical indexes such as S-100 and Ki-67 may assist in judging the grading of a 
tumor. In this study, we found that autofluorescence spectroscopy of spinal cord tumors was 
related to the immunohistochemical indexes that were relevant with tumor grading. Thus, we 
believe that our method has the potential to assist tumor grading. In the future, we plan to 
expand the tumor samples for analyses with different grading in order to investigate the 
quantitative relationship between autofluorescence spectroscopy and tumor grading so as to 
develop new processing methods for faster grading of spinal cord tumors. 

All spectral measurement experiments in this study were performed ex vivo. Due to the 
significance of their neurological functions, the normal spinal cord tissues were not collected. 
An ex vivo study can preliminarily validate the effectiveness of autofluorescence 
spectroscopy for tumor classification. In order to realize the distinction of spinal cord tumor 
tissues and normal tissues for intraoperative tumor boundary division, new detecting device 
will be developed for in vivo autofluorescence spectral measurement of the spinal cord. 
Furthermore, due to the limited data size, other statistical methods such as PCA or SVM 
could not be applied in this study. In the future, we plan to enlarge the data size to realize 
better classification results. 

5. Conclusion 
In conclusion, we developed an autofluorescence spectral measurement system and acquired 
the spectral properties of different types of spinal cord tumors ex vivo by it. Our results show 
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that extramedullary tumors with negative GFAP possess significantly different 
autofluorescence spectral properties from intramedullary tumors with positive GFAP. The 
autofluorescence spectroscopy analysis method in our research is believed to act as an 
additional diagnostic tool for the intraoperative validation of tumor types and thereby help 
further surgical treatment in consideration of its real-time performance and result accuracy. 
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